最新消息:觉得本站不错的话 记得收藏哦 博客内某些功能仅供测试 讨论群:135931704 快养不起小站了 各位有闲钱就打赏下把 My Email weicots#gmail.com Please replace # with @

Linux下 Load Average 解释 以及负载等基础知识

LINX ajiang-tuzi 2032浏览

什么是load average

linux系统中的Load对当前CPU工作量的度量 (WikiPedia: the system load is a measure of the amount of work that a computer system is doing)。也有简单的说是进程队列的长度。
Load Average 就是一段时间 (1 分钟、5分钟、15分钟) 内平均 Load 。

我们可以通过系统命令”w”查看当前load average情况

[root@weicot ~]# w
 19:28:31 up 4 min,  2 users,  load average: 0.04, 0.22, 0.13
USER     TTY      FROM             LOGIN@   IDLE   JCPU   PCPU WHAT
root     tty1                      19:25    3:03   0.06s  0.06s -bash
root     pts/0    10.0.2.2         19:28    4.00s  0.06s  0.02s w
[root@weicot ~]# uptime
 19:28:36 up 4 min,  2 users,  load average: 0.04, 0.22, 0.13
[root@weicot ~]# 
 

上面内容显示系统负载为“0.04, 0.22, 0.13”,这3个值是什么意思呢?
第一位0.04:表示最近1分钟平均负载
第二位0.22:表示最近5分钟平均负载
第三位0.13:表示最近15分钟平均负载

注. linux系统是5秒钟进行一次Load采样

关于Linux系统load average负载的理解

你可能对于 Linux 的负载均值(load averages)已有了充分的了解。负载均值在 uptime 或者 top 命令中可以看到,它们可能会显示成这个样子:
load average: 0.09, 0.05, 0.01 很多人会这样理解负载均值:三个数分别代表不同时间段的系统平均负载(一分钟、五 分钟、以及十五分钟),它们的数字当然是越小越好。数字越高,说明服务器的负载越 大,这也可能是服务器出现某种问题的信号。而事实不完全如此,是什么因素构成了负载均值的大小,以及如何区分它们目前的状况是 “好”还是“糟糕”?什么时候应该注意哪些不正常的数值?回答这些问题之前,首先需要了解下这些数值背后的些知识。我们先用最简单的例子说明, 一台只配备一块单核处理器的服务器。

行车过桥

一 只单核的处理器可以形象得比喻成一条单车道。设想下,你现在需要收取这条道路的过桥 费 — 忙于处理那些将要过桥的车辆。你首先当然需要了解些信息,例如车辆的载重、以及 还有多少车辆正在等待过桥。如果前面没有车辆在等待,那么你可以告诉后面的司机通过。 如果车辆众多,那么需要告知他们可能需要稍等一会。因此,需要些特定的代号表示目前的车流情况,例如:

0.00 表示目前桥面上没有任何的车流。实际上这种情况与 0.00 和 1.00 之间是相同的,总而言之很通畅,过往的车辆可以丝毫不用等待的通过。

1.00 表示刚好是在这座桥的承受范围内。这种情况不算糟糕,只是车流会有些堵,不过这种情况可能会造成交通越来越慢。

超过 1.00,那么说明这座桥已经超出负荷,交通严重的拥堵。那么情况有多糟糕? 例如 2.00 的情况说明车流已经超出了桥所能承受的一倍,那么将有多余过桥一倍的车辆正在焦急的等待。3.00 的话情况就更不妙了,说明这座桥基本上已经快承受不了,还有超出桥负载两倍多的车辆正在等待。

10ab4026-b112-39df-8ad1-21b5b5b5de1aload of 1.00

2173a04d-e43f-35bb-8933-22727960d54fload of 0.50

59162f56-18e2-33d3-80bc-b8ec7045b30dload of 1.70

上面的情况和处理器的负载情况非常相似。一辆汽车的过桥时间就好比是处理器处理某线程 的实际时间。Unix 系统定义的进程运行时长为所有处理器内核的处理时间加上线程 在队列中等待的时间。

和收过桥费的管理员一样,你当然希望你的汽车(操作)不会被焦急的等待。所以,理想状态 下,都希望负载平均值小于 1.00 。当然不排除部分峰值会超过 1.00,但长此以往保持这 个状态,就说明会有问题,这时候你应该会很焦急

所以你说的理想负荷为 1.00 ?

嗯,这种情况其实并不完全正确。负荷 1.00 说明系统已经没有剩余的资源了。在实际情况中 ,有经验的系统管理员都会将这条线划在 0.70:

  • “需要进行调查法则”:?如果长期你的系统负载在 0.70 上下,那么你需要在事情变得更糟糕之前,花些时间了解其原因。
  • “现在就要修复法则”:1.00 。?如果你的服务器系统负载长期徘徊于 1.00,那么就应该马上解决这个问题。否则,你将半夜接到你上司的电话,这可不是件令人愉快的事情。
  • “凌晨三点半锻炼身体法则”:5.00。?如果你的服务器负载超过了 5.00 这个数字,那么你将失去你的睡眠,还得在会议中说明这情况发生的原因,总之千万不要让它发生。

那么多个处理器呢?我的均值是 3.00,但是系统运行正常!

哇喔,你有四个处理器的主机?那么它的负载均值在 3.00 是很正常的。

在多处理器系统中,负载均值是基于内核的数量决定的。以 100% 负载计算,1.00 表示单个处理器,而 2.00 则说明有两个双处理器,那么 4.00 就说明主机具有四个处理器。

2da046b5-0f2a-3519-b41f-f61fe56ee443load of 2.0 two-lane road

回到我们上面有关车辆过桥的比喻。1.00 我说过是“一条单车道的道路”。那么在单车道 1.00 情况中,说明这桥梁已经被车塞满了。而在双处理器系统中,这意味着多出了一倍的 负载,也就是说还有 50% 的剩余系统资源 — 因为还有另外条车道可以通行。

所以,单处理器已经在负载的情况下,双处理器的负载满额的情况是 2.00,它还有一倍的资源可以利用。

多核与多处理器

先脱离下主题,我们来讨论下多核心处理器与多处理器的区别。从性能的角度上理解,一台主 机拥有多核心的处理器与另台拥有同样数目的处理性能基本上可以认为是相差无几。当然实际 情况会复杂得多,不同数量的缓存、处理器的频率等因素都可能造成性能的差异。

但即便这些因素造成的实际性能稍有不同,其实系统还是以处理器的核心数量计算负载均值 。这使我们有了两个新的法则:

  • “有多少核心即为有多少负荷”法则:?在多核处理中,你的系统均值不应该高于处理器核心的总数量。
  • “核心的核心”法则:?核心分布在分别几个单个物理处理中并不重要,其实两颗四核的处理器 等于 四个双核处理器 等于 八个单处理器。所以,它应该有八个处理器内核。

审视我们自己

让我们再来看看 uptime 的输出

~ $ uptime
23:05 up 14 days, 6:08, 7 users, load averages: 0.65 0.42 0.36

这是个双核处理器,从结果也说明有很多的空闲资源。实际情况是即便它的峰值会到 1.7,我也从来没有考虑过它的负载问题。

那么,怎么会有三个数字的确让人困扰。我们知道,0.65、0.42、0.36 分别说明上一分钟、最后五分钟以及最后十五分钟的系统负载均值。那么这又带来了一个问题:

我们以哪个数字为准?一分钟?五分钟?还是十五分钟?

其 实对于这些数字我们已经谈论了很多,我认为你应该着眼于五分钟或者十五分钟的平均数 值。坦白讲,如果前一分钟的负载情况是 1.00,那么仍可以说明认定服务器情况还是正常的。 但是如果十五分钟的数值仍然保持在 1.00,那么就值得注意了(根据我的经验,这时候你应 该增加的处理器数量了)。

那么我如何得知我的系统装备了多少核心的处理器?

在 Linux 下,可以使用

cat /proc/cpuinfo

获取你系统上的每个处理器的信息。如果你只想得到数字,那么就使用下面的命令:
grep ‘model name’ /proc/cpuinfo | wc -l

1??load average 的定义

在特定时间间隔内运行队列中的平均进程数。

2 w 命令查看 load average

load average: 1.00,??0.7,???0.8

?????????????1分钟??5 分钟??15分钟

其中分别代表1分钟,5分钟,15分钟系统的平均负载。则三个数字,会重点观察5分钟,15分钟对应的数值,这反映了系统一段时间的工作状况。此值低于1.00为正常(注释1),长时间等于1.00需要引起注意,大于5.00说明系统出现严重的 cpu资源不足,随时可能出问题,属于critical级别。

3 load average 与cpu 利用率的区别

3.1??cpu 利用率的查看,top命令

3.2 什么是cpu利用率

单位时间内进程使用cpu时间的百分比

3.3 load average??与cpu 利用率的区别

load average=占用cpu进程+排队进程数

cpu利用率=单位时间内进程使用cpu时间的百分比

load average 表示的是cpu还有多少件事情要处理,cpu利用率表示:一个进程别cpu处理时,占用时间片(注释2)的比值。

注释1:这里指的是1个cpu所对应的负载值。

注释2:在Linux的内核处理过程中,每一个进程默认会有一个固定的时间片来执行命令(默认为1/100秒),这段时间称为时间片。

使用命令uptime查看Linux?CPU负荷??

一、查看系统负荷

如果你的电脑很慢,你或许想查看一下,它的工作量是否太大了。

在Linux系统中,我们一般使用uptime命令查看(w命令和top命令也行)。(另外,它们在苹果公司的Mac电脑上也适用。)

Linux load average

系统平均负载被定义为在特定时间间隔内运行队列中的平均进程数。如果一个进程满足以下条件则其就会位于运行队列中:
– 它没有在等待I/O操作的结果
– 它没有主动进入等待状态(也就是没有调用’wait’)
– 没有被停止(例如:等待终止)
你在终端窗口键入uptime,系统会返回一行信息。
这行信息的后半部分,显示”load?average”,它的意思是”系统的平均负荷”,里面有三个数字,我们可以从中判断系统负荷是大还是小。

为什么会有三个数字呢?你从手册中查到,它们的意思分别是1分钟、5分钟、15分钟内系统的平均负荷。

如果你继续看手册,它还会告诉你,当CPU完全空闲的时候,平均负荷为0;当CPU工作量饱和的时候,平均负荷为1。

那么很显然,”load?average”的值越低,比如等于0.2或0.3,就说明电脑的工作量越小,系统负荷比较轻。

但是,什么时候能看出系统负荷比较重呢?等于1的时候,还是等于0.5或等于1.5的时候?如果1分钟、5分钟、15分钟三个值不一样,怎么办?

二、一个类比

判断系统负荷是否过重,必须理解load?average的真正含义。下面,我根据”Understanding?Linux?CPU?Load“这篇文章,尝试用最通俗的语言,解释这个问题。

首先,假设最简单的情况,你的电脑只有一个CPU,所有的运算都必须由这个CPU来完成。

那么,我们不妨把这个CPU想象成一座大桥,桥上只有一根车道,所有车辆都必须从这根车道上通过。(很显然,这座桥只能单向通行。)

系统负荷为0,意味着大桥上一辆车也没有。

系统负荷为0.5,意味着大桥一半的路段有车。

系统负荷为1.0,意味着大桥的所有路段都有车,也就是说大桥已经”满”了。但是必须注意的是,直到此时大桥还是能顺畅通行的。系统负荷为1.7,意味着车辆太多了,大桥已经被占满了(100%),后面等着上桥的车辆为桥面车辆的70%。以此类推,系统负荷2.0,意味着等?待上桥的车辆与桥面的车辆一样多;系统负荷3.0,意味着等待上桥的车辆是桥面车辆的2倍。总之,当系统负荷大于1,后面的车辆就必须等待了;系统负荷越?大,过桥就必须等得越久。

CPU的系统负荷,基本上等同于上面的类比。大桥的通行能力,就是CPU的最大工作量;桥梁上的车辆,就是一个个等待CPU处理的进程(process)。

如果CPU每分钟最多处理100个进程,那么系统负荷0.2,意味着CPU在这1分钟里只处理20个进程;系统负荷1.0,意味着CPU在这1分钟?里正好处理100个进程;系统负荷1.7,意味着除了CPU正在处理的100个进程以外,还有70个进程正排队等着CPU处理。

为了电脑顺畅运行,系统负荷最好不要超过1.0,这样就没有进程需要等待了,所有进程都能第一时间得到处理。很显然,1.0是一个关键值,超过这个值,系统就不在最佳状态了,你要动手干预了。

三、系统负荷的经验法则

1.0是系统负荷的理想值吗?

不一定,系统管理员往往会留一点余地,当这个值达到0.7,就应当引起注意了。经验法则是这样的:

当系统负荷持续大于0.7,你必须开始调查了,问题出在哪里,防止情况恶化。

当系统负荷持续大于1.0,你必须动手寻找解决办法,把这个值降下来。

当系统负荷达到5.0,就表明你的系统有很严重的问题,长时间没有响应,或者接近死机了。你不应该让系统达到这个值。

四、多处理器

上面,我们假设你的电脑只有1个CPU。如果你的电脑装了2个CPU,会发生什么情况呢?

2个CPU,意味着电脑的处理能力翻了一倍,能够同时处理的进程数量也翻了一倍。

还是用大桥来类比,两个CPU就意味着大桥有两根车道了,通车能力翻倍了。

所以,2个CPU表明系统负荷可以达到2.0,此时每个CPU都达到100%的工作量。推广开来,n个CPU的电脑,可接受的系统负荷最大为n.0。

五、多核处理器

芯片厂商往往在一个CPU内部,包含多个CPU核心,这被称为多核CPU。

在系统负荷方面,多核CPU与多CPU效果类似,所以考虑系统负荷的时候,必须考虑这台电脑有几个CPU、每个CPU有几个核心。然后,把系统负荷除以总的核心数,只要每个核心的负荷不超过1.0,就表明电脑正常运行。

怎么知道电脑有多少个CPU核心呢?

"cat?/proc/cpuinfo"
#命令,可以查看CPU信息。
"grep?-c?'model?name'?/proc/cpuinfo"
#命令,直接返回CPU的总核心数。

六、最佳观察时长

最后一个问题,”load?average”一共返回三个平均值—-1分钟系统负荷、5分钟系统负荷,15分钟系统负荷,—-应该参考哪个值?

如果只有1分钟的系统负荷大于1.0,其他两个时间段都小于1.0,这表明只是暂时现象,问题不大。

如果15分钟内,平均系统负荷大于1.0(调整CPU核心数之后),表明问题持续存在,不是暂时现象。所以,你应该主要观察”15分钟系统负荷”,将它作为电脑正常运行的指标。

Unix/Linux 的 Load 初级解释

下文转载自dbanotes的博客
几乎每个接触类 Unix 操作系统的工程师都知道如何查看系统负载。但这东西的工作机理到底是怎样的,可能没有多少能说清楚。对比了一些相关信息,加上自己的理解,做一下笔记。

什么是 Load ? 什么是 Load Average ?

Load 就是对计算机干活多少的度量(WikiPedia: the system load is a measure of the amount of work that a computer system is doing)。也有简单的说是进程队列的长度. Load Average 就是一段时间 (1 分钟、5分钟、15分钟) 内平均 Load 。【最好的参考文章:UNIX? Load Average Part 1: How It Works】

下面是一个 uptime 命令输出:

$ uptime
18:57:48 up 423 days, 3:55, 2 users, load average: 1.16, 1.12, 1.20

尽管各种信息来源的定义都不太确定。能确定的一件事情是,你不能精确获取当前时间的 Load . 最小的计算粒度是 5 秒钟(CALC_LOAD 每 5HZ 计算一次, 5HZ 为 5秒钟,这里的 HZ 是系统定义的变量). 参见 Linux Kernel 这段代码:

#869-879
count -= ticks;
if (unlikely(count < 0)) {
active_tasks = count_active_tasks();
do {
CALC_LOAD(avenrun[0], EXP_1, active_tasks);
CALC_LOAD(avenrun[1], EXP_5, active_tasks);
CALC_LOAD(avenrun[2], EXP_15, active_tasks);
count += LOAD_FREQ;
} while (count < 0);
}
}

如何判断系统是否已经 Over Load ?

对一般的系统来说,根据 CPU 数量去判断,如上面的例子, 如果平均负载始终在 1.2 以下,而你是 2 颗 CPU 的机器。那么基本不会出现 CPU 不够用的情况。也就是 Load 平均要小于 CPU 的数量。

这是 Solaris 性能与工具(Solaris Performance Tools ) 一书推荐的评估方法。【在这里要推荐一下这本书,尽管在 Load 这个地方没有达到我期望的那么细致。但全书揭示了非常多的性能信息。每个 DBA、架构师 的必须书。】

这么说实际上带来另外两个疑问:

1 如果是多核 CPU / 超线程的机器怎么判断? 对这样的机器,我的建议是看操作系统怎么识别的 CPU,根据系统识别出来的逻辑 CPU 数量来判断。如果要考虑性能系数,建议参考一下 Oracle 针对不同架构下多核 CPU 的收费标准。

2 如果应用是面向线程的怎么判断? 这实际上和 M:N 线程模型有关。你的系统是怎样的? 把这个问题考虑进去即可了。

多数情况下,Load 过高都未必和 CPU 有关。或许倒是有一个例外的,就是应用场景的问题。比如用单 CPU 的机器去做高并发 Web 服务器,麻烦就来了

Load 与容量规划(Capacity Planning)

任何一个相对成熟的站点都会利用 Cacti(基于RRDTool) 等工具进行容量规划工作。抓取的 Load 会传 1、5、15 分钟列值过去,这三个度量采用哪个呢? 15 分钟为首选【参见Gunther 的 PPT】。

Load 与系统预警

很多对可用性要求比较高的环境都建立了 邮件或SMS 报警机制。关于 Load 报警阈值的制定也有看到不太合理的时候。这里建议 Critical 值(如果用 Nagios 之类的工具你明白这是什么)上限为 物理 CPU 的个数(当然你可以设置比这个低)。但比这个值高的话,意义就不大了。比如,数据库服务器有 4 颗 CPU,那么 Load 高于 4 就应该报警出来,设置比 4 高可能意义不大,因为接到报警还有个人为响应时间…

误解 一:系统 Load 高一定是性能有问题。

真相:系统 Load 高也或许是因为在进行 CPU 密集型的计算(比如编译)

误解 二:系统 Load 高一定是 CPU 能力问题或数量不够。

真相:Load 高只是代表需要运行的队列累积过多了。但队列中的任务实际可能是耗 CPU的,也可能是耗 I/O 乃至其它因素的。

误解 三:系统长期 Load 高,首选增加 CPU。

真相:Load 只是表象,不是实质。增加 CPU 个别时候会临时看到系统 Load 下降,但治标不治本。

小小一个 Load 讲究其实不少。英文信息其实比较全的,尽量保证加入一点新信息到这篇文章里。入看到有写的不合理的地方或者有异议,请指正或告知。

–EOF–

FAQ 1:数据库服务器突然 CPU 100% 繁忙,咋办?

A :一般情况下,这是由糟糕的 SQL 引起。建议抓取 Slow Query Log ,针对 I/O 开销比较大(重点看全表扫描)的 SQL 进行优化。根据经验值,每个 CPU Core 一秒钟能处理 100-400MB 数据量。如果是大量的并发 I/O 操作,尽管存储的吞吐可能还没那么大,也可能会把 CPU “塞满”
备注 及引用
本文 部分内容来自于互联网由博主收集和整理
仅供学习和交流使用

转载请注明:(●--●) Hello.My Weicot » Linux下 Load Average 解释 以及负载等基础知识